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A simple, yet general, existence theorem for best approximations is proved.
It contains the majority of the known existence theorems.

1. INTRODUCTION

One of the basic questions in approximation theory concerns the existence
of best approximations. Specifically, let K be a subset of a normed linear
space X and let x E X. The (possibly empty) set of best approximations to x
from K is defined by

PK(x) = {y E K Iii x - y II = d(x, K)),

where d(x, K) = inf{li x - y Ii lyE K}. The set K is called proximinal (resp.
Chebyshev) if PK(x) contains at least (resp. exactly) one point for every
x E X. The mapping PK : X -+ 2K is called the metric projection onto K.

In this terminology, the basic existence question can be phrased as:
Which subsets are proximinal?

There is much that is known concerning existence of best approximations.
The following list of examples is intended to be a representative sampling of
some of the more useful known proximinal sets.

(1) Any reflexive subspace (Klee [19]), e.g., a finite-dimensional
subspace (Riesz [23]).

(2) Any weak* closed subset of a dual space (Phelps [21]).

(3) Any closed convex subset of a reflexive space (Klee [19]).

(4) The rational functions !J1tnm in Lp[a, b), 1 :(: P :(: 00 (Walsh [31],
Efimov and Stechkin [10]).

(5) The exponential sums in L,,[a, b), I :(: p :(: 00 (Hobby and Rice
[15], de Boor [5], Werner [32], Kammler [18]).
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(6) The splines in C[a, b] of order n with k free knots (Schumaker
[25]).

(7) Any weak-operator closed subset of the space of operators on a
Hilbert space, e.g., the positive or Hermitian operators (Halmos [13]).

The known proofs of these results exhibit a variety of techniques, although
there is a common thread of "compactness" interwoven throughout.

In this paper we will prove a simple yet general existence theorem which
includes as special cases all of the examples mentioned above. To do this, we
will first generalize the important notion of an "approximatively compact"
set (which was introduced by Efimov and Stechkin [10] and later extended to
"approximatively weakly compact" by Breckner [3]) to what we call
"approximatively T-compact" for a "regular mode of convergence T" (see
definitions in Section 2). Each approximatively T-compact set is easily seen
to be proximinal and, moreover, its metric projection satisfies a certain
continuity condition. Tn particular, each of the examples (1)-(7) mentioned
above turns out to be an approximatively T-compact set for an appropriate
mode of convergence T. In practice, T is usually taken to be convergence
relative to the norm, weak, or weak* topologies. However, in some of the
most interesting examples (e.g., in C[a, b], the rational functions, exponential
sums, or splines with free knots), T does not arise from any topology on the
space (cf. Theorems 3.1 and 3.3 below).

In Section 2 we state the main definitions and obtain some results of a
general nature. We also introduce there property (AT): if a net (X8) T-con­
verges to x and II x811 ---+ II x II , then II X8 - x II ---+ O. (This generalizes a well­
known geometric property of Fan and Glicksberg [I I] when T is generated by
the weak topology.) In spaces with property (AT)' every approximatively
T-compact set is actually approximatively compact (Theorem 2.15). One
consequence of this is that every weak* closed subset of a locally uniformly
convex dual space is approximatively compact (Corollary 2. I7). Also (Propo­
sition 2.24) an approximation theoretic characterization of those dual spaces
having property (AT) is given, where Tdenotes weak* sequential convergence.
In Section 3 we consider some applications in C[a, b] and show that the
(generalized) rational functions, splines with free knots, and exponential
sums are approximatively L1-compact. In Section 4, the rational functions
and exponential sums are considered as subsets of Lp[a, b] for I oS; p oS; 00.

In Section 5 we observe (Theorem 5.2) that every weak*-operator closed
subset of the space of bounded linear operators 2(X, Z*) from X into z* is
approximatively weak* operator-compact. This implies that example (7)
above is proximinaI. In Section 6 we consider some further extensions possible
by "localizing" the definition of approximatively T-compact (Theorem 6.1).
As a particular application, we recover an existence theorem of Dunham [9]
(see the remark following Proposition 6.4).
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Except where explicitly noted otherwise, all of the main ideas and essentially
all of the results presented here were obtained during September-October,
1972. and were included in my mimeographed lecture notes [6] written
during this period. Since then, a few other writers have considered some
similar things. In particular, Vlasov [30] has also defined an approximatively
T-compact set, but he required, in addition, that T be a topology. However,
this requirement apparently excludes some of the more interesting applica­
tions which are included under our definition (e.g., the rational functions,
exponential sums, and splines with free knots; see Theorems 3.1 and 3.3).

Some of the results in this paper were presented, without proofs, in [7]. In
addition, the subspace case was considered in further detail in [7] (but not
here).

All undefined terms or results are standard and can be found, for example,
in [8].

2. GENERAL RESULTS

We first define a general type of convergence for nets or sequences in a
normed space.

2.1. DEfiNITION. Let X be a normed linear space. Suppose that in X
certain nets (resp. sequences) are said to T-converge, written X8 -+~ x. Suppose
also that this convergence has the following properties.

(i) T is "translation invariant," i.e., Xli -+~ X implies X8 --r y ->~ x y
for any y E X.

(ii) T is "norm dominated," i.e., X8 -+~ x implies I x ~ lim sup Xli

(iii) T is "homogeneous," i.e., Xli -+~ X implies (XXil ->~ eXX for every
scalar lX.

In this situation T is called a regular mode of convergence (resp. sequential
convergence) on X.

Clearly, every regular mode of convergence is a regular mode of sequential
convergence, but the converse is not true in general.

2.2. EXAMPLES. Unless otherwise stated, each of the following is a regular
mode of convergence. The notation we adopt in these examples will be used
throughout the paper.

2.2.1. Convergence in norm: X8 -+ll x iff !I Xli - x -+ O.

2.2.2. Weak convergence: X8 -+w X iff X*(X8) -+ x*(x) for each x* E X*.

2.2.3. If X ~ y* is a dual space, weak* convergence in X: yt -+W' y* itT
yt(y)-> y*(y) for each y E Y.
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2.2.4. In the space qT) of continuous functions on a compact Hausdorff
space T, pointwise convergence on a dense subset of T: Xa -+L1 x iff there is a
dense subset To = To(xa, x) of T such that xlt) -+ x(t) for each t E To .

2.2.5. In C[a, b], pointwise convergence at all except possibly finitely many
points: Xa -+<P x iff there is a set To = To(;'\a , x) in [a, b] such that [a, b]\ To is
finite and xlt) -+ x(t) for every t E To .

2.2.6. In an Litt) space (1 ~ p ~ co), convergence of a sequence almost
everywhere: Xn -+a.e. X iff tt({t 1xn(t) -1+ x(t)}) = 0. (This is a regular mode of
sequential convergence-using Fatou's lemma--but it is not, in general, a
regular mode of convergence. To see this, consider the net (xa) of all charac­
teristic functions of finite sets in [0, I] ordered by containment. Then xlt) -+ I
for every t E [0, I]. However, Ii Xa Ii]) = °for every 8 and II I '11) [. Thus
2.1 (ii) fails.)

2.2.7. Almost weak convergence: Xa -+aw X iff there is a weak * dense
subset A of the set of extreme points of the unit ball in x* such that x*(xa) -->­

x*(x) for each x* EA. (Note that in the space C(T), aw-convergence coin­
cides with Ll-convergence as defined in 2.2.4.)

In the remaining examples, we consider regular modes of convergence in
the space 2'(X, Y) of all bounded linear operators L from the normed linear
space X into Y with the norm

L
II L(x)11

= s.u.p -'1-1.
1
- •

:1'=""=0 . X

The properties below are listed in order of increasing generality.

2.2.8. Uniform convergence: La -+U L iff I' La - L -+ 0.

2.2.9. Strong convergence: La -+8 L iff Llx) - L(xW -+ ° for each
x EX.

2.1.10. Weak operator convergence: La -+wo L iff y*(La(x)) -+ .y*(L(x))
for every x E X and y* E Y*.

2.2.11. Weak* operator convergence if Y = z* is a dual space: La -+w*o L
iff Llx)(z) -+ L(x)(z) for each x E X and z E Z.

Note that if Y is reflexive, then wo-convergence and w*o-convergence in
2'(X, Y) coincide.

If T is a regular mode of convergence on X, we write TS for the induced
regular mode of sequential convergence on X. For example, X n -+ws X if
X n -+w x.

A regular mode of convergence (resp. sequential convergence) T is called
topological if there is a topology on X such that convergence of a net (resp.
sequence) in this topology is equivalent to T-convergence. Examples 2.2.1-



136 FRAI\K DEUTSCH

2.2.3 and 2.2.8-2.2.11 are topological. However, examples 2.2.4-2.2.7 are not
topological. (In each case the proof of this fact follows by constructing a
sequence which does not T-converge to zero yet every subsequence has a sub­
sequence which does T-converge to zero. Such a construction would be
impossible if T were topological.)

2.3. DEFINITION. Let K be a subset of the normed space X and x E X. A
sequence (y,,) in K is called a minimizing sequence for x if 'I x - y" -'>

d(x, K). Let T be a regular mode of convergence (resp. sequential convergence)
on X. The set K is called approximatively T-compact if for each x E X, each
minimizing sequence for x has a subnet (resp. subsequence) which ,-con­
verges to a point of K.

For T ~. n (i.e. convergence relative to the norm topology), such sets
were first studied by Efimov and Stechkin [10] and called approximatively
compact. (We will usually defer to their simpler terminology for, .=c n; i.e.,
approximatively compact and approximatively norm-compact are syno­
nymous.) Breckner [3] generalized approximative compactness by replacing
the norm with the weak topology. That is, he considered approximatively
w-compact sets. It should be mentioned that the original motivation for
introducing approximative compactness in [10] was to aid in the study of the
problem of the convexity of Chebyshev sets, and not existence problems.

The main reason for the introduction of approximatively T-compact sets is
that they are proximinal and their metric projections satisfy a certain con­
tinuity criterion (see Theorem 2. 7).

A property somewhat stronger than approximative T-compactness is
bounded T-compactness.

2.4. DEFINITION. Let T be a regular mode of convergence (resp. sequential
convergence) on X. A subset K of X is called boundedly T-compact if each
bounded net (resp. sequence) has a subnet (resp. subsequence) which T­

converges to a point of K.
The particular cases of bounded T-compactness when T denotes con­

vergence relative to either the norm or weak topologies were first mentioned
by Klee [19] who showed such sets were proximinal. More generally, it follows
easily from the defInition that

2.5. LEMMA. Every boundedly ,-compact set is approximatively T-compact.

In addition to approximatively T-compact sets being proximinal, their
metric projections also satisfy a certain continuity criterion. To show this,
we first must define the notions of T-open, T-compact, etc.

2.6. DEFINITION. Let T be a regular mode of convergence (resp. sequential
convergence) on X.
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(1) A subset F of X is called T-closed if F contains the limit of each of
its T-convergent nets (resp. sequences).

(2) A subset G of X is called T-open if X\G is T-closed.

(3) A subset A of X is called countably T-compact if each sequence in
A has a subnet (resp. subsequence) which T-converges to a point in A.

(4) A subset A of X is called T-compact if each net (resp. sequence) in A
has a subnet (resp. subsequence) which T-converges to a point in A.

If T is topological, then the above definitions are equivalent to the usual
(i.e., topological) ones.

(5) The metric projection onto a set K is called norm-T upper semi­
continuous (briefly, norm-T u.s.c.) at a point X o provided that for each sequence
(xn) with II Xn - X o 11---+ 0 and each T-open set V:J PK(XO)' we have V:J
PK(xn) eventually (i.e., for n sufficiently large). PK is called norm-T u.s.c. if it
is norm-T U.S.C. at each point of X.

If T is generated by the norm topology, then norm-T u.s.c. reduces to the
usual notion of upper semicontinuity (u.s.c.) for set-valued maps (cf. Hahn
[12]). If T is topological and PK is singleton-valued (i.e., K is Chebyshev), then
norm-T u.s.c. reduces to ordinary continuity of the mapping PK from X with
its norm topology into K with its T topology.

The fundamental properties of approximatively T-compact sets can now be
stated.

2.7. THEOREM. Let T be a regular mode of convergence (resp. sequential
convergence) on X, and let K be an approximatively T-compact set. Then

(1) K is proximinal;

(2) PK is norm-T upper semicontinuous;

(3) PK(X) is countably T-compact for each x E X.

Moreover, if K is boundedly T-compact then (1), (2), and the following
statement hold.

(4) PK(x) is T-compact for each x EX.

Proof (1) Let x E X and let (Yn) be a minimizing sequence in K for x.
Then (Yn) has a subnet (resp. subsequence) (Y6) which T-converges to some
Yo E K. Then by 2.1(i) and (ii), Y6 - x ---+7 Yo - x and

II Yo - x II ~ lim sup II Y6 - x II = d(x, K).

Thus Yo E PK(x) and K is proximinal.
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(2) If the result is false, there exist X o E X, a sequence (xn ) with 'I x" -
Xu Ii ---+ 0, and a T-open set V ~ PK(Xo) such that PK(xn )\, V c;!c for each
n O. Choose Yn E PK(xn)\ V for each n O. Then

d(xo , K) ~ i X o - y" X o - x" x" - Yn I

Thus (Yn) is minimizing for X o ' Choose a subnet (resp. subsequence) (16)
such that Y8 ---+7 Yo E K. Then (just as in the proof of (I)) Yo E PK(Xo) C v. But
Y8 E X\ V and X\ V is T-c1osed so Yo E X\ V, a contradiction.

(3) Let (Yn) be a sequence in PK(x). Then (Yn) is minimizing for x so it
has a subnet (resp. subsequence) T-converging to a point Yo in K. By the proof
of (I), Yo E PK(x).

(4) Let Kbe boundedly T-compact. By Lemma 2.5, (I), (2), and (3) hold.
Let x E X and (Yo) be a net (resp. sequence) in PK(x). Since PK(x) is bounded,
there exists a subnet (resp. subsequence) (Yy) which T-converges to some
Yu E K. Then (just as in the proof of (I)) Yo E PK(x) so PK(x) is T-compact. I

In the special case when T == n (resp. T = 11'), statement (2) of Theorem 2.7
was established by Singer [26] (resp. Vlasov [29]). As noted in the Introduc­
tion, Theorem 2.7 was first proved in [6]; also, statements (I) and (3), under
the additional assumption that T be a topology, were established indepen­
dently by Vlasov [30].

Remark. It is worth noting that we have not yet used the homogeneity
property 2.1 (iii) in the definition of regular mode of convergence. In fact, we
have not even used the full strength of properties 2.1(i) and (ii). More pre­
cisely, all that has been used concerning T thus far is that ifY8 ---+7 Y and x E X,
then Ii y - x II ~ lim sup 1116 - x [i • (This observation is further pursued in
Section 6.) In the next lemma, however, explicit use is made of property
2.1(iii).

In the following lemma, and the sequel the closed unit ball in a normed
linear space Y will be denoted by B(Y).

2.8. THEOREM. Let T be a regular mode of convergence (resp. sequential
convergence) on X, and let Y be a T-closed linear subspace ofX. Then B( Y) is T­

compact .q. each T-closed subset of Y is boundedly T-compact.

Proof Let B(Y) be T-compact and KaT-closed subset of Y. Let (xo) be a
bounded net (resp. sequence) in K. Since B(Y) is T-compact, so is every
multiple aB( Y) (by property 2.1 (iii)). Hence there is a subnet (resp. sub­
sequence) which T-converges to some x E X. Since K is T-c1osed, X E K. Thus
K is boundedly T-compact.
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For the converse, it suffices to show that B(Y) is T-closed. Let (Y8) be a net
(resp. sequence) in B(Y) and Y8 -+7 y. Since Y is T-closed, y E Y. By norm
domination, II y II ~ lim sup II Y8 Ii ~ I so Y E B(Y) and the proof is
complete. I

2.9. COROLLARY. Let Y be a reflexive subspace of X. Then each weakly
closed subset K of Y is boundedly w-compact. In particular, K is proximinal and
PK is norm-weak upper semicontinuous.

The proof, of course, follows since reflexive spaces are characterized by
the weak compactness of their unit balls.

Klee had observed in [19] that reflexive subspaces are proximinaI.
Since the unit ball in a dual space is weak* compact, we obtain

2.10. COROLLARY. Every weak * closed subset K ofa dual space is bounded­
ly w*-compact. In particular, K is proximinal and PK is norm-w* upper semi­
continuous.

Phelps [21] apparently was the first to observe that weak* closed subsets of
dual spaces are proximinaI.

As another immediate consequence of Theorem 2.8, we can actually
characterize reflexive Banach spaces.

2.11. COROLLARY. For a Banach space X, the following statements are
equivalent.

(l) X is reflexive.

(2) Each weakly closed subset of X is boundedly w-compact.

(3) Each weakly-sequentially closed subset ofX is boundedly ws-compact.

In particular, each weakly closed (e.g., every closed convex) subset of a
reflexive space is proximinal and has a norm-weak upper semicontinuous
metric projection.

Proof The equivalence of (l) and (2) (resp. (3)) follows from Theorem 2.8
by taking T to be the regular mode of convergence (resp. sequential conver­
gence) generated by the weak topology, and by using the Eberlein-Smulian
characterization of reflexive Banach space as those whose unit balls are
weakly (resp. weakly sequentially) compact. I

The equivalence of the three statements in Corollary 2.11 was also essen­
tially established by Vlasov [28] along with the fact that a boundedly w­
compact Chebyshev set has a norm-weak continuous metric projection.

A simple consequence of James's well-known characterization of reflexive
Banach spaces [16] is that X is reflexive if and only if each closed hyperplane
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is proximinal. From this fact and Corollary 2.11, we easily deduce the well­
known

2.12. COROLLARY. For a Banach space X, the following statements are
equivalent.

(1) X is reflexive.

(2) Each weakly closed subset of X is approximatively w-compact.

(3) Each weakly closed subset of X is approximatively ws-compact.

(4) Each weakly sequentially closed subset of X is proximinal.

(5) Each weakly closed subset of X is proximinal.

(6) Each closed convex subset ofX is proximinal.

(7) Each closed subspace of X is proximinal.

The equivalence of (1), (3), and (4) was first established by Breckner [3];
while the equivalence of (1), (5), (6), and (7) is essentially James' theorem
(cf., e.g., [27]).

We next turn to the question of when an approximatively T-compact set is
actually approximatively (norm-) compact.

2.13. DEFINITION. Let T be a regular mode of convergence (resp. sequen­
tial convergence) on X. X is said to have property (AT) provided that II Xo ­

x 11-+ 0 whenever (xo) is a net (resp. sequence) with X O-+T x and II xoll -+
Ilxll·

When T ~~ ws, the regular mode of sequential convergence generated by
the weak topology, property (AT) reduces to the well-known property first
studied by Kadec [17] and Fan and Glicksberg [11].

2.14. EXAMPLES. (i) Every locally uniformly convex space, hence every
uniformly convex space, has property (Aws) and property (A w) (see [4],
p. 113).

(ii) Every locally uniformly convex dual space has property (A w•s) and
property (A w.).

(iii) The Lp(fl,) spaces, 1 ~ p < CYJ, have property (Aa.eJ (see, e.g., [14],
p.209.).

The importance of property (AT) stems from the following result.

2. I 5. THEOREM. In a space which has property (AT)' everyapproximatively
T-compact set is approximatively compact.

Proof Let T be a regular mode of convergence (resp. sequential conver­
gence) on X. Let K C X be an approximatively T-compact set, x E X, and let
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(Yn) in K be minimizing for x: II x - Yn II -+ d(x, K). Then (Yn) has a subnet
(resp. subsequence) (Ya) which T-converges to some Y E K. Then Y E PK(x),
II x - y II = d(x, K) = lim II x - Ya II, and x - Ya -+T X - y. By property
(AT)' iI.V - Ya II = II(x - Ya) - (x - Y)II- O. Thus (Ya) converges in norm
to Y so K is approximatively compact. I

In the particular case when T = ws, Theorem 2.15 was first proved by
Breckner [3].

2.16. COROLLARY. Let T be a regular mode ofconvergence (resp. sequential
convergence) on X. If B(X) is T-compact and X has property (AT)' then every
T-closed set is approximatively compact.

Proof Theorem 2.8, Lemma 2.5, and Theorem 2.15. I

2.17. COROLLARY. Let X be a locally uniformly convex dual space. Then
every weak* closed subset of X is approximatively compact. In particular,
every Ifeak* closed convex subset of X is a Chebyshev set with a continuous
metric projection.

Prool I t suffices to observe the following facts and then apply Corollary
2.16: (1) the unit ball in a dual space is weak* compact; (2) a locally uniformly
convex dual space has property (A w*); ,(3) in a strictly convex space, every
point has at most one best approximation from a convex set. I

The last statement of Corollary 2.17, for weak* closed subspaces, was
essentially proved by Lindenstrauss [20] using a selection theorem.

Since the weak and weak* topologies coincide in reflexive spaces, Corollary
2.17 implies the following well-known result of Efimov and Stechkin [10].

2.18. COROLLARY. Let X be a reflexive locally uniformly convex Banach
space (e.g., a uniformly convex Banach space). Then every weakly closed subset
is approximatively compact. In particular, every closed convex subset of X is
a Chebyshev set with a continuous metric projection.

It is known that if T is generated by the weak topology, then the converse of
Corollary 2.16 is also valid. Indeed, we have

2.19. THEOREM. Let X be a Banach space. The following statements are
equivalent.

(1) X is reflexive and has property (A w).

(2) Every weakly closed set is approximatively compact.

(3) Every closed convex set is approximatively compact.

(4) Every closed hyperplane is approximatively compact.
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The implication (I) (2) follows from Corollary 2.16, while the implica­
tions (2) => (3) (4) are obvious. The implication (4) 0=;, (I) follows using
James' characterization of reflexive Banach spaces [16]. Theorem 2.19. under
the additional assumption that X be strictly convex, was essentially esta­
blished by Fan and Glicksberg [11]. (Singer [26] observed that strict con­
vexity was not essential to their proof.)

2.20. PROBLEM. Is the converse to Corollary 2.16 valid? That is. if every
T-closed set is approximatively compact must B(X) be T-compact and X have
property (AT)?

There is a partial converse of Corollary 2.16 which we now state. For the
purposes of this result we need the following definition.

2.21. DEFINITION. A regular mode of sequential convergence T is called
fully regular if

(i) "Scalar multiplication is 'T-continuous,''' i.e., X n __~T x and (oc n )

scalars with eX n --)- ex implies lXnXn --)-T ax.

(ii) X n --)-T X implies x n" --)-T X for each subsequence (xn) of (x n)'

(iii) "Limits are unique," i.e., x" _>T x and XI! --)-T Y implies X == y.

We note that all of the examples of regular modes of sequential convergence
given in 2.2 are fully regular.

2.22. PROPOSITION. Let T be 'a fully regular mode ofsequential convergence
on the normed space X. Ifevery T-closed subset ofX is approximatively compact,
X has property (AT)'

Proof Let (x,J in X, X n .-..T xo , and il X n -> I: XO . To show: x" _.-
X O II --)- 0. If X o =c 0, the result is obvious so we assume X o °and. let Yn
xn/li x" jI (n = 0, 1,2, ...,). Then !iYnll = I for all n and, by2.21(i),y" --)-T Yo' Let
K = {Yn I n = 0, I, 2, ...} We first show that Kis T-closed. Let {zn} be in K
and Z" --)-T z. If {z,J is finite, then (zn) has a constant subsequence: Z"k cc Yno
(k = I, 2, ... ,). Then by 2.21 (ii) Z c= Zn ,-= Yn E K If {zn} is not finite, it is

k 0

possible to choose a subsequence (zn) so that letting zn
k

= Yn; for some
n~ , (Yn;) will be a subsequence of (Yn)' Hence by 2.21 (ii) Yn; Z n

k
_.~T Z and

Yn; --)-T Yo . By 2.21(iii), Z == Yo E K Thus is T-closed. By hypothesis, K is
approximatively compact. But

v• n I = d(O, K) (n =c 0, 1, 2, ....)

so (Yn) is a minimizing sequence for O. Hence there is a subsequence (Yn) and
a point Y E K such that II Yn

k
- Y !I --)- O. Since Yn" --)-T Yo, we have that

1)'0 -- r lim sup I .1'"" - ,1' o
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so y = Yo. That is, II Yn
k

- Yo 11-->- 0. This argument shows that every sub­
sequence of (Yn) has a subsequence which converges in norm to Yo. Hence
II Yn - Yo il -->- 0. Thus

X n - Xo II ~ II X n II [II Yn - Yo I' + I :1 ':0 iT -- .:n I: I'I Xo II] -->- 0,

and this completes the proof. I

Combining Corollary 2.16 with Proposition 2.22 we obtain

2.23. PROPOSITION. Let T be afully regular mode ofsequential convergence
on the normed space X and suppose B(X) is T-compact. Then every T-closed
subset of X is approximatively compact -¢> X has property (AT)'

If X* is the dual of a separable normed linear space X, it is known that the
Banach-Alaoglu theorem (i.e., B(X*) is weak* compact) can be streng­
thened to: B(X*) is weak* sequentially compact (w*s-compact). Thus we
obtain from Proposition 2.23 the following approximation theoretic charac­
terization of property (Aw*s).

2.24. PROPOSITION. Let X be a separable normed linear space. Then
every l\'*s-closed subset of X* is approximatively compact -¢> X* has property
(Aw*s): (x~) in X*, Ii ~ II = 1 (n = 0, 1,2, ... ,), and x~(x) -->- xt(x) for all
x Eo X implies Ii x~ - xt II -->- 0.

3. ApPLICATIONS IN C[a, b]

Let Ci and H be finite-dimensional subspaces of C[a, b] consIsting of
analytic functions. We define the "generalized" rational functions by

£Jf = ~(G, H) = {r E C[a, b]1 rh = g, h E H\{O}, g E G},

Recall from 2.2.4 that a net (xa) in C[a, b] is said to Ll-converge to x E C[a, b]
iff xlt) -->- x(t) for all t in some dense subset of [a, b].

3.1. THEOREM. £Jf is boundedly Ll-compact in C[a, b]. In particular, ~ is
proximinal, Pg, is norm-Ll U.S.c., and Pg,(x) is Ll-compact for each x E C[a, b].

Proof The last statement follows from Theorem 2.7. To prove the first
statement, let (ra) be a bounded net in £Jf, say II rail ~ M. Then we can write
raha = ga for some haE H, II hall = I, go E G, and for all t E [a, b],

(*)
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That is, II gall ~ M for all 8. Since G and H are finite dimensional, and (h a)

and (ga) are bounded, by passing to a subnet, we may assume !I ga - go I -+ 0
for some go E G and 'I hi; -- ho II --~ 0 for some hoE H, :i ho II ~~ 1. Now hocan
have only finitely many zeros and passing to the limit in Eq. (*) we get

(t E [a, b]). (X*)

Hence each zero of ho is a zero of go . Thus we see that the function 1'0 ==

golho is well defined and continuous on [a, b]\Z(ho), where Z(ho) is the zero set
of ho . Further, no matter how "0 is defined on Z(ho), ,.oho = go . If we cancel
the common zero factors of ho and go on Z(ho), 1'0 is seen to be well defined
and continuous everywhere. Thus "0 E C[a, b] and roho = go, i.e., 1'0 E fJP.
Furthermore, if t E [a, b]\Z(ho),

I' (t) = go(gL = lim ga(t) = lim r (t)
o ho(t) ha(t) a·

That is, ra -+L1 ro . I
The "existence" part of Theorem 3.1 is essentially due to Walsh [31]. Note

that the proof of Theorem 3.1 actually shows that fJP is boundedly lP-compact.
The "ordinary" rational functions are defined by

where i!J\ denotes the set of all polynomials of degree at most k.

3.2. COROLLARY. Bil"," is boundedly LJ-compact in C[a, b]. In particular,
fJPrnn is proximinal, P8In is norm-LJ u.s.c., and P8I,,(x) is LJ-compact for each
xEC[a,b]. m m

Proof We need only observe that

fJPrnn = {r E C[a, b]1 ,.h = g for some hEY'rn\{O}, g E Y'n}

and apply Theorem 3.1. I
The exponential sums oforder N form the subset of C[a, b] defined by

EN = li~ Pi(t) elo.;t IPi is a polynomial of degree 8Pi' '\; E~,

1 I
and L (Bpi + 1) c: N\.

1
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The spline functions of order n with k free knots form the subset of C[a, b)
defined by

Sn.k = {x E C[a, b]l there exist a = to < t1 < ... < tr +1 = band
integers m1 , ••• , m r in {I, 2'00" n + I} with L~ mi = k such that
x E f!i'n in each interval (ti , ti+l)' while x has continuous derivatives
of order n - m i in a neighborhood of ti (i = 1,2'00" r)}.

3.3. THEOREM. Let K = En or Sn.k' Then K is boundedly Js-compact in
C[a, b). In particular, K is proximinal, PK is norm -Js u.s.c., and PK(x) is
Js-compact for each x E C[a, b).

Proof. First let K = En. Let (Yn) be a bounded sequence in K. By a
result of Werner [32], there exists a subsequence (Yn) which converges

k

pointwise, except possibly at the end points of [a, b), to some Yo E K. Thus
Yn -..Ll Yo and K is boundedly Js-compact.

Next let K = Sn.k . A close inspection of Schumaker's proof [25] that K is
proximinal reveals that he actually showed that every bounded sequence in K
has a subsequence which converges pointwise, except possibly at a finite
number of points, to an element of K. Thus K is boundedly Js-compact. I

The following example shows that the notions of approximative (norm-)
compactness and approximative weak sequential-compactness do not suffice
for proving existence theorems.

3.4. Example of a Subset of C[O, 1] Which is Boundedly JS-Compact but
not Approximatively Weak Sequentially-Compact.

Such an example is, of course, proximinal (by Theorem 2.7) and is not
approximatively (norm-) compact since the norm topology is stronger than
the weak topology.

Let K = {O} U {F(a) I°~ a < CXJ}, where

I
F(a)(t) = at + I (0 ~ t ~ 1).

Since II F(a) - F(b)11 ~ Ia - b I , F is Lipschitz continuous. Let {F(an)}~ be a
sequence in K. If {an I n = 1, 2,00.,} is bounded, choose a subsequence (an)
which converges to some a E [0, CXJ). Then II F(an) - F(a)II ~ I an. - a I -..'0
and this implies that F(an) -..Ll F(a). If {an I ~ = 1, 2,00.,} is tinbounded,
choose a subsequence an. -: 00. Then

)

F(an)(t) -.. g(t) = I

==0

if t == 0,

if 0< t ~ I,
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and this implies that F(an ) ->-41 0. In either case, (F(a,,)) Ll-converges to an
element of K. Thus J( is b~undedly Lls-compact. )

To see that F is not approximatively weak-compact, observe that if x is the
constant function x(t) =L then (F(n))';;~l is a minimizing sequence for x
which converges pointwise to the function g defined above. If (F(n))~' had a
subnet converging weakly to some f E C[O, I], then it must also converge
pointwise to f, which implies f g ¢= C[O, I], an absurdity.

4. ApPLICATIONS IN Lv[a, b], 1 S p S 00

Fix any p with 1 :S; p :S; 00 and let G and H be finite-dimensional subspaces
of Lv[a, b] consisting of analytic functions. Consider the "generalized
rational" functions in Lv[a, b]:

!.Yt = !.Yt(G, H) = {r E qa, b]1 rh = g, h E H\{O}, g E G}.

Recall that for a sequence (x,,) in Lj,[a, b] we write x" ->-a.e, X if x" converges
to x almost everywhere.

The following result was obtained in collaboration with R. E. Huff.

4.1. THEOREM. (1) rr I :S; p < 00, fJl is approximatively compact. In
particular, ,?It is proximinal, PfR is norm-norm upper semicontinuous, and PfR(x)
is compact for each x E Lv[a, b].

(2) !Jf is boundedly a,e.-compact in Loo[a, b]. In particular, fJl is proxi­
minaI, P,<Jt is norm-a.e. upper semicontinuous, and P,c;p(x) is a,e.-compact for
each x E Loo[a, b].

Proof (1) We first show that !Jf is boundedly a.e.-compact in LAa, b]
:S; p < 00, Let (rn) be a bounded sequence in!Jf: r" liv :S; M. We have that

for some h" E H\,{O}, g" E G. (*)

By scaling both sides of this equation, we may assume h" I'n = 1, where
lip + Ilq = 1. Using (*) and HOlder's inequality, we obtain

Since G and H are finite dimensional there is a subsequence (nk) of the
natural numbers and points go E G, ho E H such that

and



EXISTENCE OF BEST APPROXIMAnONS 147

Since all norms are equivalent on a finite-dimensional space, we have II gn
k

­

go 1100 - ... 0 and II hn - ho 1100 -- O. Clearly II ho Ilq = 1 so ho has at most finitely
k

many zeros since it is analytic. Thus except on the (finite) zero set Z(ho), we
have

gnk(t) go(t)
rnk(t) = hnk(t) -- ho(t)·

Now golho is well defined and continuous except on Z(ho). Thus by defining
golho to be constantly 1 on Z(ho), it follows that go/ho is measurable (cf. [14;
Theorems 11.8(v) and 11.11 n. Further, by Fatou's lemma,

~ lim inf[l! x II + II rnk IIJP ~ [II x II + M]P

implies Ii x - golho Ilv ~ II x II + M and, in particular golho E Lp[a, b].
We now show that there exists roE &£ such that rn

k
__a.e. ro. Let to be a zero

of ho in [a, b] with multiplicity fL:

]fgo does not have a zero at to of multiplicity ~fL, then in some neighborhood
of to we have

go(t) get)
ho(t) (t - to)" h(t) ,

where g, h are analytic, h(to) # 0 # g(to), and v .;::;: I. Thus for all t in some
(perhaps smaller) neighborhood E of to , we have

I
get) I
h(t) ?: 3 > O.

Since golho E Lp[a, b], we get

f I
go(t) IP

P r I -
00 > h () dt?: 3 I _ Ivp dt - 00

E 0 t . E t to .

because vp ?: I. This contradiction shows that every zero of ho is also a zero
of go with at least as large multiplicity. Thus the function golho may be
redefined at the zeros of ho (i.e., on Z(ho)) so that the resulting function ro is
continuous on [a, b]. Clearly, horo = go so ro E []f and r

nk
__a.e. ro .

This proves that &£ is boundedly a.e.-compact in L,,[a, b]. By Lemma 2.5,
~ is approximatively a.e.-compact. As noted in 2.14(iii), LAa, b] has property
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(A a.e .). By Theorem 2.15, .A is approximatively compact. The last statement
of part (I) follows from Theorem 2.7.

(2) The proof of the case p~= 00 is exactly the same as in Theorem 3.1. I

The fact that :Y1 is approximatively compact in LAa, b] for I p x.
also follows from a result of Blatter [2] who used a different proof. See also
Wolfe [33] for a related result.

Just as in Section 3, if we specialize by taking G = :?J", H .;I),,, (the
polynomials of degree at most nand m. respectively), we get the "ordinary
rational functions"

111 g E .1\. , Ii E';/'I/I , h

Thus Theorem 4.1 implies

I°on [a, b]\.

4.2. COROLLARY. (I) If I ~ p < 00, then .3rm " is approximativel.r compact
in L p[a, b]. In particular, .C#"," is proximinal, p.~n is norm-norm upper semi­
continuous, and pgj'n(x) is compact for each x E L;,"[a, b].

m

(2) 9f"," is boundedly a.e.-compact in Lro[a, b]. In particular, -AI/I" is
proximinal, Pgj''' is norm-a.e. upper semicontinuous, and Pgj'll(x) is a.e.-compact
for each x E L[~, b]. m

Hobby and Rice [15] (see also Rice [22, pp. 46--53]) have shown that a
certain class of "y-polynomials" is boundedly compact in Lp[O, I]. I
p ~ 00. The proof given in [15] holds only if the nonlinear parameters come
from a compact set. An alternate approach, using divided differences. which
is valid in the general case, was given by de Boor [5]. (In particular, the
ordinary polynomials and exponential sums are included as special cases.)
Thus for T = 11, the norm topology, the conclusion of Theorem 2.7 holds for
the "y-polynomials" in L ,,[0, 1], I ~ P 00.

Efimov and Stechkin [10] proved that every approximatively compact
Chebyshev set in a uniformly convex space must be convex. It follows that in
L,,[a, b), I < p < 00, none of the sets !]f, 271 nIH, or the exponential sums is a
Chebyshev set (except in trivial cases).

5. ApPLICATlOI"S IN THE SPACE OF OPERATORS

Let X and Y be normed linear spaces, ..5f(X, Y) the space of all bounded
linear operators L from X into Y endowed with the operator norm: L II ~,

sup{1 Lx! I x E X, I x I}, and let B(..5f(X, Y)) denote the closed unit ball
in ..5f(X, Y). The weak and weak* operator topologies on 2"(X. Y) (as descri­
bed in 2.2.10 and 2.2.11) are regular modes of convergence.
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The following useful lemma can be proved in a manner similar to Alaoglu's
theorem [8, p. 424].

5.1. LEMMA. B(2(X, Y)) is wo-closed. If Y is a dual space, B(2(X,
Y)) is w*o-compact. If Y is reflexive, B(2(X, Y)) is wo-compact.

5.2. THEOREM. Let Y be a dual space (resp. reflexive) and let :f be a
w*o-closed (resp. wo-closed) subset of 2(X, Y). Then :f is boundledly w*o­
compact (resp. boundedly wo-compact). In particular, :f is proximinal, P:;r is
norm-w*o (resp. norm-wo) upper semicontinuous, and P:;r(L) is w*o-compact
(resp. wo-compact) for each LEO 2(X, Y).

Proof. From Lemma 5.1, every norm-closed ball B in 2(X, Y) is w*o­
compact (resp. wo-compact). Hence B n:f is w*o-compact (resp. wo­
compact). Thus :f is boundedly w*o-compact (resp. boundedly wo-compact).
The last statement of the theorem follows from Theorem 2.7. I

5.3. COROLLARY. Let X be a Hilbert space and let .%" be a wo-closed
subset of2(X, X) (e.g., :f is the set ofall positive operators, or :%" is the set of
all Hermitian operators). Then :f is boundedly wo-compact. In particular, :f
is prm::iminal, p."£' is norm-wo upper semicontinuous, and P;e(L) is wo-compact
for each LEO 2(X, X).

The existence part of this corol1ary was first observed, among other things,
by Halmos [13].

Rogers [24] has shown that many subsets of the normal operators on a
Hilbert space are not proximinaJ (e.g., the normal operators, the compact
normal operators, the unitary operators, and the projection operators). He
conjectures (in our terminology) that a subset of the normal operators is
proximinaJ if and only if it is boundedly wo-compact.

6. A GENERALIZATION

6.1. DEFINITIONS. Let K and Y be subsets of a normed linear space X.
Suppose that certain bounded nets (resp. sequences) (k~) in K are said to
T-converge, written k~ ~T k. Suppose also that this convergence has the
fol1owing property: if k~ ~T k and y EO Y, then

Ii k - y II .:-( lim sup II k~ - y II· (6.1.1)

In this situation, we say that T is a mode of convergence (resp. sequential con­
vergence) on K relative to Y.

Let T be a mode of convergence (resp. sequential convergence) on K
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relative to Y. We say that K is approximatively T-compact relative to Y if, for
each y E Y, each minimizing sequence in K for y has a subnet (resp. subse­
quence) which T-converges to a point in K.

Note that if T is a regular mode of convergence (resp. sequential conver­
gence) (as defined in 2.1) and K is approximatively T-compact (as defined in
2.3), then for any subset V it is obvious that: (I) T is a mode of convergence
(resp. sequential convergence) on K relative to Y; and (2) K is approximati­
vely T-compact relative to Y. Thus these relativized notions are more general
than the original ones given in Section 2.

By inspecting the proof of Theorem 2.7( I), one sees that we have actually
verified the following result.

6.1. THEOREM. Let K and Y be subsets of X and let T be a mode of con­
vergence (resp. sequential convergence) on K relative to Y. If K is approximati­
vely T-compact relative to Y, then each y E Y has a best approximation in K.

As an application of this theorem, let T be a topological space, B(T) the
space of all bounded real-valued functions x on T with the norm !I x Ii ~c

SUPta I x(t)i , and let C(T) denote the subset of B(T) consisting of all the
continuous functions.

We will say that a bounded sequence (xn) in B(T) d-converges to some
x E B(T), and write X n -+d x, provided that (xn) converges to x pointwise on
some dense subset S of T, and for each t E T\S, the inequality

holds.

lim inf xes) ~ x(t) ~ lim sup xes)
s~t s-~/

seS SES

(D)

6.2. LEMMA. d is a mode ofsequential convergence on B(T) relative to C(T).

Proof Let (xn) be a bounded sequence in B(T), x E B(T), and X n -+d x.
Given y E C(T), we must show that Ii x - y Ii ~ lim sup II X n - Y I,. Since
X n -+d x, there exists a dense subset S of T such that xn(s) -+ xes) for all
s E S, and for each t E T\S,

lim inf xes) ~ x(t) ~ lim sup xes).
s~t s~t

sES sES

If s E S,

i xes) - y(s)1 = lim i xn(s) - y(s)1 ~ lim sup II X n - Y
n n

If t E T\S, then using the continuity ofy and inequality (*), we obtain

lim inf[x(s) - yes)] ~ x(t) - yet) ~ lim sup[x(s) - yes)].
s----"( S-j(

seS seS

C")
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! x(t) - y(t)1 ~ max{llim inf[x(s) - y(s)]I, lim sup[x(s) - y(s)]IJ
s~t s~t

SES SES

~ lim sup I x(s) - y(s)1
s~t

sES

= lim sup{lim i xn(s) - y(s)l}
S---7t n
sES

~ lim sup II X n - Y I:·
n
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It follows that II x - y II ~ lim sup II X n - Y II and the proof is complete. I

6.3. DEFINITION (Dunham [9]). A subset K of B(T) is called dense com­
pact if each bounded sequence in K has a subsequence converging pointwise
on a dense subset S of T to some function k E K such that, for every t E T\S,

lim inf k(s) ~ k(t) ~ lim sup k(s).
$---7t S---7(

sES sES

(6.3.1 )

Note that inequality (6.3.1) is always satisfied for each continuous function
k. In particular, a subset of C(T) is dense compact if and only if it boundedly
Ll-compact (see 2.2.4).

6.4. PROPOSITION. If K is a dense compact subset of B(T), then K is
approximatively d-compact relative to C(T). In particular, each x E C(T) has
a best approximation in K.

Proof By Lemma 6.2, d is a regular mode of sequential convergence on
K relative to C(T). Let x E C(T) and let (kn ) in K be a minimizing sequence
for x. Then (kn) is bounded so by dense compactness it has a subsequence
which d-converges to a point in K. Thus K is approximatively d-compact
relative to C(T). The last statement follows from Theorem 6.1. I

The last statement of Proposition 6.4 was first proved by Dunham [9], who
also noted that many of classical approximating families in C[a, b] (e.g., the
finite-dimensional subspaces, the rational functions 81n

m [a, b], and the
exponential sums of order n) are dense compact. This also follows since a
subset of C(T) is dense compact if and only if it is boundedly Ll-compact, and
then applying Corollary 3.2 and Theorem 3.3.

We have seen that every approximatively T-compact set is proximinal.
More generally, every set K in X which is approximatively T-compact relative
to X is proximinal. It is natural to ask whether the converse is true. More
precisely, if K is a proximinal subset of a normed linear space X, must K be
approximatively T-compact for some mode of convergence (or sequential
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convergence) Ton K relative to X? The following surprising example, due to
Dan Amir (private communication), shows that the answer is negative.

EXAMPLE OF A CHEBYSHEV HYPERPLANE WHICH IS NOT ApPROXIMATlVELY

T-COMPACT FOR ANY T

Consider the space X of convergent sequences (i.e., x( (0)= lim x(n)
exists for every x E X) with the norm

l> • ?«(k)'2]1!2
xi =max{2Ix(0)1, x(oo)l}+ ~(T-) .

Let M = {x E X I x(O) = O}. Then M is a Chebyshev hyperplane with linear
metric projection given by PM(x) I::~l x(k) ek' where ek is the kth unit
vector: ekU) = Okj. Let x = I:~ e" and Xn = L~ ek' Then x" EM, PIAx)
= L~ c" , and II x - X n Ii -)- 2 = d(x, M), while

xnl

for every n. This shows that (xn ) is a minimizing sequence for x in M for
which

lim I X nn X£
PM(x)i - I

1n view of (6.1.1), this precludes any subnet of (xn ) from T-converging to
PM(.'J;) whatever the mode of convergence T relative to X might be.
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